Exercise 58

Find an equation of the tangent to the curve at the given point.

$$
y=\frac{x^{2}-1}{x^{2}+1}, \quad(0,-1)
$$

Solution

The aim is to find the slope of the tangent line at $x=0$. Take the derivative of y.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}+1}\right) \\
& =\frac{\left[\frac{d}{d x}\left(x^{2}-1\right)\right]\left(x^{2}+1\right)-\left[\frac{d}{d x}\left(x^{2}+1\right)\right]\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{(2 x)\left(x^{2}+1\right)-(2 x)\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{4 x}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Plug in $x=0$.

$$
y^{\prime}(0)=\frac{4(0)}{\left(0^{2}+1\right)^{2}}=0
$$

Use the point-slope formula with this slope and the given point $(0,-1)$ to get the equation of the tangent line.

$$
\begin{gathered}
y-(-1)=0(x-0) \\
y+1=0 \\
y=-1
\end{gathered}
$$

Below is a graph of the curve and its tangent line at $(0,-1)$.

